Copied to
clipboard

G = C3xC23.23D6order 288 = 25·32

Direct product of C3 and C23.23D6

direct product, metabelian, supersoluble, monomial

Aliases: C3xC23.23D6, C62.65D4, C62.200C23, C6.47(C6xD4), (C6xD4).22C6, (C6xD4).27S3, Dic3:C4:14C6, C6.D4:8C6, (C2xC12).241D6, C23.28(S3xC6), (C22xC6).30D6, (C22xDic3):8C6, (C6xC12).262C22, (C2xC62).55C22, C6.123(D4:2S3), (C6xDic3).137C22, C32:23(C22.D4), (Dic3xC2xC6):9C2, (D4xC3xC6).16C2, (C2xC6).8(C3xD4), (C2xC4).16(S3xC6), (C2xD4).5(C3xS3), C6.29(C3xC4oD4), C2.11(C6xC3:D4), C22.57(S3xC2xC6), (C2xC12).71(C2xC6), (C3xC6).257(C2xD4), C6.148(C2xC3:D4), C22.4(C3xC3:D4), (C3xDic3:C4):36C2, C2.15(C3xD4:2S3), (C2xC6).45(C3:D4), (C22xC6).29(C2xC6), (C2xC6).55(C22xC6), C3:5(C3xC22.D4), (C3xC6).137(C4oD4), (C3xC6.D4):24C2, (C2xC6).333(C22xS3), (C2xDic3).36(C2xC6), SmallGroup(288,706)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C3xC23.23D6
C1C3C6C2xC6C62C6xDic3Dic3xC2xC6 — C3xC23.23D6
C3C2xC6 — C3xC23.23D6
C1C2xC6C6xD4

Generators and relations for C3xC23.23D6
 G = < a,b,c,d,e,f | a3=b2=c2=d2=e6=1, f2=dc=cd, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, ebe-1=fbf-1=bd=db, ce=ec, cf=fc, de=ed, df=fd, fef-1=ce-1 >

Subgroups: 394 in 183 conjugacy classes, 66 normal (34 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, C22, C6, C6, C6, C2xC4, C2xC4, D4, C23, C32, Dic3, C12, C2xC6, C2xC6, C2xC6, C22:C4, C4:C4, C22xC4, C2xD4, C3xC6, C3xC6, C3xC6, C2xDic3, C2xDic3, C2xC12, C2xC12, C3xD4, C22xC6, C22xC6, C22.D4, C3xDic3, C3xC12, C62, C62, C62, Dic3:C4, C6.D4, C6.D4, C3xC22:C4, C3xC4:C4, C22xDic3, C22xC12, C6xD4, C6xD4, C6xDic3, C6xDic3, C6xC12, D4xC32, C2xC62, C23.23D6, C3xC22.D4, C3xDic3:C4, C3xC6.D4, C3xC6.D4, Dic3xC2xC6, D4xC3xC6, C3xC23.23D6
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, D6, C2xC6, C2xD4, C4oD4, C3xS3, C3:D4, C3xD4, C22xS3, C22xC6, C22.D4, S3xC6, D4:2S3, C2xC3:D4, C6xD4, C3xC4oD4, C3xC3:D4, S3xC2xC6, C23.23D6, C3xC22.D4, C3xD4:2S3, C6xC3:D4, C3xC23.23D6

Smallest permutation representation of C3xC23.23D6
On 48 points
Generators in S48
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 17 15)(14 18 16)(19 23 21)(20 24 22)(25 27 29)(26 28 30)(31 33 35)(32 34 36)(37 39 41)(38 40 42)(43 45 47)(44 46 48)
(1 13)(2 17)(3 15)(4 14)(5 18)(6 16)(7 20)(8 24)(9 22)(10 23)(11 21)(12 19)(25 38)(26 47)(27 40)(28 43)(29 42)(30 45)(31 41)(32 44)(33 37)(34 46)(35 39)(36 48)
(1 8)(2 9)(3 7)(4 12)(5 10)(6 11)(13 24)(14 19)(15 20)(16 21)(17 22)(18 23)(25 28)(26 29)(27 30)(31 34)(32 35)(33 36)(37 48)(38 43)(39 44)(40 45)(41 46)(42 47)
(1 6)(2 4)(3 5)(7 10)(8 11)(9 12)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)(25 34)(26 35)(27 36)(28 31)(29 32)(30 33)(37 45)(38 46)(39 47)(40 48)(41 43)(42 44)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 36 11 30)(2 32 12 26)(3 34 10 28)(4 29 9 35)(5 25 7 31)(6 27 8 33)(13 40 21 37)(14 44 22 47)(15 38 23 41)(16 48 24 45)(17 42 19 39)(18 46 20 43)

G:=sub<Sym(48)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,17,15)(14,18,16)(19,23,21)(20,24,22)(25,27,29)(26,28,30)(31,33,35)(32,34,36)(37,39,41)(38,40,42)(43,45,47)(44,46,48), (1,13)(2,17)(3,15)(4,14)(5,18)(6,16)(7,20)(8,24)(9,22)(10,23)(11,21)(12,19)(25,38)(26,47)(27,40)(28,43)(29,42)(30,45)(31,41)(32,44)(33,37)(34,46)(35,39)(36,48), (1,8)(2,9)(3,7)(4,12)(5,10)(6,11)(13,24)(14,19)(15,20)(16,21)(17,22)(18,23)(25,28)(26,29)(27,30)(31,34)(32,35)(33,36)(37,48)(38,43)(39,44)(40,45)(41,46)(42,47), (1,6)(2,4)(3,5)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,34)(26,35)(27,36)(28,31)(29,32)(30,33)(37,45)(38,46)(39,47)(40,48)(41,43)(42,44), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,36,11,30)(2,32,12,26)(3,34,10,28)(4,29,9,35)(5,25,7,31)(6,27,8,33)(13,40,21,37)(14,44,22,47)(15,38,23,41)(16,48,24,45)(17,42,19,39)(18,46,20,43)>;

G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,17,15)(14,18,16)(19,23,21)(20,24,22)(25,27,29)(26,28,30)(31,33,35)(32,34,36)(37,39,41)(38,40,42)(43,45,47)(44,46,48), (1,13)(2,17)(3,15)(4,14)(5,18)(6,16)(7,20)(8,24)(9,22)(10,23)(11,21)(12,19)(25,38)(26,47)(27,40)(28,43)(29,42)(30,45)(31,41)(32,44)(33,37)(34,46)(35,39)(36,48), (1,8)(2,9)(3,7)(4,12)(5,10)(6,11)(13,24)(14,19)(15,20)(16,21)(17,22)(18,23)(25,28)(26,29)(27,30)(31,34)(32,35)(33,36)(37,48)(38,43)(39,44)(40,45)(41,46)(42,47), (1,6)(2,4)(3,5)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,34)(26,35)(27,36)(28,31)(29,32)(30,33)(37,45)(38,46)(39,47)(40,48)(41,43)(42,44), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,36,11,30)(2,32,12,26)(3,34,10,28)(4,29,9,35)(5,25,7,31)(6,27,8,33)(13,40,21,37)(14,44,22,47)(15,38,23,41)(16,48,24,45)(17,42,19,39)(18,46,20,43) );

G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,17,15),(14,18,16),(19,23,21),(20,24,22),(25,27,29),(26,28,30),(31,33,35),(32,34,36),(37,39,41),(38,40,42),(43,45,47),(44,46,48)], [(1,13),(2,17),(3,15),(4,14),(5,18),(6,16),(7,20),(8,24),(9,22),(10,23),(11,21),(12,19),(25,38),(26,47),(27,40),(28,43),(29,42),(30,45),(31,41),(32,44),(33,37),(34,46),(35,39),(36,48)], [(1,8),(2,9),(3,7),(4,12),(5,10),(6,11),(13,24),(14,19),(15,20),(16,21),(17,22),(18,23),(25,28),(26,29),(27,30),(31,34),(32,35),(33,36),(37,48),(38,43),(39,44),(40,45),(41,46),(42,47)], [(1,6),(2,4),(3,5),(7,10),(8,11),(9,12),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24),(25,34),(26,35),(27,36),(28,31),(29,32),(30,33),(37,45),(38,46),(39,47),(40,48),(41,43),(42,44)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,36,11,30),(2,32,12,26),(3,34,10,28),(4,29,9,35),(5,25,7,31),(6,27,8,33),(13,40,21,37),(14,44,22,47),(15,38,23,41),(16,48,24,45),(17,42,19,39),(18,46,20,43)]])

72 conjugacy classes

class 1 2A2B2C2D2E2F3A3B3C3D3E4A4B4C4D4E4F4G6A···6F6G···6S6T···6AG12A···12H12I···12P12Q12R12S12T
order12222223333344444446···66···66···612···1212···1212121212
size1111224112224666612121···12···24···44···46···612121212

72 irreducible representations

dim111111111122222222222244
type+++++++++-
imageC1C2C2C2C2C3C6C6C6C6S3D4D6D6C4oD4C3xS3C3:D4C3xD4S3xC6S3xC6C3xC4oD4C3xC3:D4D4:2S3C3xD4:2S3
kernelC3xC23.23D6C3xDic3:C4C3xC6.D4Dic3xC2xC6D4xC3xC6C23.23D6Dic3:C4C6.D4C22xDic3C6xD4C6xD4C62C2xC12C22xC6C3xC6C2xD4C2xC6C2xC6C2xC4C23C6C22C6C2
# reps123112462212124244248824

Matrix representation of C3xC23.23D6 in GL4(F13) generated by

9000
0900
0010
0001
,
1000
0100
0015
00012
,
12000
01200
0010
0001
,
1000
0100
00120
00012
,
9000
01000
0010
001012
,
0300
4000
0050
00118
G:=sub<GL(4,GF(13))| [9,0,0,0,0,9,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,5,12],[12,0,0,0,0,12,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,12,0,0,0,0,12],[9,0,0,0,0,10,0,0,0,0,1,10,0,0,0,12],[0,4,0,0,3,0,0,0,0,0,5,11,0,0,0,8] >;

C3xC23.23D6 in GAP, Magma, Sage, TeX

C_3\times C_2^3._{23}D_6
% in TeX

G:=Group("C3xC2^3.23D6");
// GroupNames label

G:=SmallGroup(288,706);
// by ID

G=gap.SmallGroup(288,706);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-3,336,590,555,9414]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^2=d^2=e^6=1,f^2=d*c=c*d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,e*b*e^-1=f*b*f^-1=b*d=d*b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*e^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<